RAGã®ä»£æ¿ã¢ãããŒãã®å¯èœæ§ãAIã¹ã¿ãŒãã¢ããAI21ã瀺ããã€ããªããAIã¢ãã«ã®å®å
INDEX
AI21ã®ææ°ãã€ããªããã¢ãã«ãJamba 1.5
GPTãªã©äººæ°ã®ããäž»èŠå€§èŠæš¡èšèªã¢ãã«ïŒLLMïŒã®å€ãã¯ãããã©ã³ã¹ãã©ãŒããŒããšããã¢ãŒããã¯ãã£ãåºç€ãšããŠããããã©ã³ã¹ãã©ãŒããŒããŒã¹ã®LLMã¯ãã®1幎ã»ã©ã§é£èºçãªé²åãéããããŸããŸãªã¿ã¹ã¯ã§é«ãããã©ãŒãã³ã¹ãçºæ®ã§ããããã«ãªã£ããããããé·æã«ãªããšç²ŸåºŠã倧ããäžããããŸãèšç®ã³ã¹ããæ¥å¢ããç¹æ§ãããããã®èª²é¡ã®è§£æ±ºã«åããåãçµã¿ã掻çºåããŠããã
ã€ã¹ã©ãšã«ã®AI21ã¯ããã®åéã®åãçµã¿ã§æ³šç®ãããã¹ã¿ãŒãã¢ããã®1ã€ãå瀟ã2024幎8ææ«ã«ãªãªãŒã¹ããAIã¢ãã«ãJamba 1.5ããä»åŸã®LLMã®æ¹åæ§ã決å®ä»ãããã®ã«ãªãå¯èœæ§ãç§ããããã ã
Jamba 1.5ã®ç¹åŸŽã¯ããã©ã³ã¹ãã©ãŒããŒãšãMambaããšåŒã°ããæ§é åç¶æ 空éïŒSSMïŒã¢ãã«ãçµã¿åããããã€ããªããã¢ãŒããã¯ãã£ãæ¡çšããŠããç¹ã«ãããJambaã¯ãJoint Attention and Mambaãã®é æåãåã£ããã®ã
AI21ã¯ãJamba 1.5ã·ãªãŒãºãšããŠ2ã€ã®ã¢ãã«ããªãªãŒã¹ããããJamba 1.5 miniãã¯ç·ãã©ã¡ãŒã¿æ°520åãã¢ã¯ãã£ããã©ã¡ãŒã¿æ°120åããJamba 1.5 largeãã¯ç·ãã©ã¡ãŒã¿æ°3,980åãã¢ã¯ãã£ããã©ã¡ãŒã¿æ°940åã®ã¢ãã«ãäž¡ã¢ãã«ãšãMixture-of-ExpertsïŒMoEïŒã¢ãŒããã¯ãã£ãæ¡çšã25äž6,000ããŒã¯ã³ãšãã倧ããªã³ã³ããã¹ããŠã£ã³ããŠãæã€ã
Jamba 1.5ã®ç¹çãã¹ãç¹ã¯ãæè¿é¢å¿ãé«ãŸããšãŒãžã§ã³ãåAIéçºã«é©ããæ©èœã倿°æèŒããŠããããšã ãããšãã°ãJSON察å¿ãåŒçšæ©èœãããã¥ã¡ã³ãAPIã颿°åŒã³åºãæ©èœãªã©ãæãããããAIã³ãã¥ããã£ã§ã¯ãç¹ã«åŒçšæ©èœã«æ³šç®ãéãŸã£ãŠããããã®æ©èœã¯åŸæ¥ã®Retrieval Augmented GenerationïŒRAGïŒãšã¯ç°ãªããã¢ãã«èªäœã«çµ±åãããã¢ãããŒãã§ãRAGã代æ¿ããå¯èœæ§ãããããã ã
ããå ·äœçã«èšããšãJambaã¯ãå ¥åãããããã¥ã¡ã³ãã«åºã¥ããŠåçãçæããéã«ããã®æ å ±ã®åºæãæç€ºããããšãå¯èœãšãªããããšãã°ãé·ãå ±åæžã«åºã¥ããŠè³ªåã«çããå ŽåãJambaã¯ã第3ç« ã®ããŒã¿ã«ãããš…ãããçµè«ã»ã¯ã·ã§ã³ã§è¿°ã¹ãããŠããããã«…ããšãã£ã圢ã§ãæ å ±ã®åºæãæç€ºããªããåçãçæã§ããã®ã ã
RAGãšã®å€§ããªéãã¯ãå€éšããŒã¿ããŒã¹ãæ€çŽ¢ããå¿ èŠããªãç¹ã«ãããRAGã§ã¯ãAIã¢ãã«ã質åã«çããéã«å€éšã®ç¥èããŒã¹ãæ€çŽ¢ããé¢é£æ å ±ãååŸãããJambaã®åŒçšæ©èœã¯ãäžããããã³ã³ããã¹ãå ã§æ å ±ã远跡ããåŒçšãè¡ããããã«ãããåŠçé床ãåäžããããäžè²«æ§ã®ããåçãå¯èœã«ãªãã以äžã§ã¯ããªããããå¯èœãšãªãã®ããæè¡çãªèæ¯ãæ¢ãã
Jamba 1.5ãæ¡çšããããã©ã³ã¹ãã©ãŒããŒÃMambaãã®ãã€ããªããã¢ãããŒããšã¯ïŒ
Jamba 1.5ã®åºç€ã®1ã€ãšãªã£ãŠããMambaã¯ãã«ãŒãã®ãŒã¡ãã³å€§åŠãšããªã³ã¹ãã³å€§åŠã®ç ç©¶è ãã2023幎12æã«ææ¡ãããã©ã³ã¹ãã©ãŒããŒã代æ¿ããæ°ããã¢ãŒããã¯ãã£ã ãMambaã¯æ§é åç¶æ 空éã¢ãã«ïŒSSMïŒã®äžçš®ã§ãåŸæ¥ã®ãã©ã³ã¹ãã©ãŒããŒã¢ãã«ãæ±ããé·æåŠçã®èª²é¡ã解決ããããã«éçºãããã
Mambaã®ç¹åŸŽã¯ãéžæã¡ã«ããºã ãã«ãããããã¯ã人éãæç« ãèªããšãã«éèŠãªéšåã«æ³šç®ããã®ãšäŒŒããããªåãããããé·ãå°èª¬ãèªããšããç§ãã¡ã¯ç©èªã®å±éã«éèŠãªéšåã«æ³šç®ããããã»ã©éèŠã§ãªã现ããæåã¯è»œãèªã¿æµãããšããããMambaã®éžæã¡ã«ããºã ãããããšäŒŒããããªããšãè¡ã£ãŠããã
ãã®ä»çµã¿ã«ãããMambaã¯é·ãæç« ãå¹ççã«åŠçããããšãå¯èœãšãªã£ããåŸæ¥ã®AIã¢ãã«ã§ã¯ãæç« ãé·ããªãã»ã©å¿ èŠãªèšç®éãã¡ã¢ãªãæ¥æ¿ã«å¢ããŠããŸãåé¡ããã£ãããMambaã«ã¯ãã®åé¡ãçºçããªããããã«ãMambaã«ã¯ãç·åœ¢ã§ã¹ã±ãŒãªã³ã°ããããšããç¹æ§ããããããã¯ãåŠçããæç« ãé·ããªã£ãŠããå¿ èŠãªèšç®æéãããããã«ããå¢ããªãããšãæå³ãããäžæ¹ãåŸæ¥ã®ãã©ã³ã¹ãã©ãŒããŒã¢ãã«ã¯ãäºæ¬¡é¢æ°çã«ã¹ã±ãŒãªã³ã°ãããç¹æ§ãæã£ãŠãããæç« ãé·ããªãã»ã©èšç®æéãæ¥æ¿ã«å¢å ããã®ã ã
ãã®æ§é ã®éãã«ãããMambaã¯é·ãã³ã³ããã¹ããæ±ãéã«åªããããã©ãŒãã³ã¹ãçºæ®ã§ãããããšãã°ã100äžããŒã¯ã³ïŒæ¥æ¬èªã§çŽ100äžèªïŒãè¶ ããããŒã¿ã§ãæ§èœãã»ãšãã©èœã¡ãªãããšãå ±åãããŠããã
ããããMambaã«ã課é¡ã¯ååšãããAI21ã®èª¬æã«ãããšãMambaã¯é·æåŠçã«ã¯åªããŠãããã®ã®ãå šäœã®ã³ã³ããã¹ããèæ ®ããæ³šææ©æ§ããªããããç¹ã«æ³èµ·é¢é£ã®ã¿ã¹ã¯ã§æ¢åã®æé«æ§èœã¢ãã«ãšåçã®åºåå質ãéæããã®ãé£ãããšãããããã§ãããæ³èµ·ããšã¯ãéå»ã«åŠç¿ããæ å ±ãé©åã«æãåºããå©çšããèœåãæããMambaã¯ãæç« å šäœã®ã³ã³ããã¹ããååã«èæ ®ã§ããªããããããããã¿ã¹ã¯ã§æ¢åã®æé«æ§èœã¢ãã«ãšåçã®æ§èœãçºæ®ããã®ãé£ããã£ãã®ã ã
ãã®èª²é¡ãå æããããã«ãAI21ã¯Mambaãšãã©ã³ã¹ãã©ãŒããŒã®ãã€ããªããã¢ãŒããã¯ãã£ãéçºããããããJambaã®æ žå¿éšåãšãªããJambaã¯ããã©ã³ã¹ãã©ãŒããŒãMambaããããŠMixture-of-ExpertsïŒMoEïŒå±€ã§æ§æãããŠãããã¡ã¢ãªãã¹ã«ãŒããããããã©ãŒãã³ã¹ãåæã«æé©åããããšãç®æããã¢ãã«ã ã
ãã®æ°ããã¢ãŒããã¯ãã£ã«ãããJamba 1.5ã¯é·æåŠçã®å¹çæ§ãšé«ãåºåå質ãäž¡ç«ãããããšã«æåãAI21ã«ããã°ãJamba 1.5ã¯é·ãã³ã³ããã¹ãã§åãµã€ãºã®ä»ã¢ãã«ã®3åã®ã¹ã«ãŒãããïŒã¹ããŒãïŒãéæããåäžã®GPUã§14äžããŒã¯ã³ã®ã³ã³ããã¹ããåŠçã§ãããšããã
é·æçè§£ã§å§åçãªåŒ·ã¿
Mambaã®åŒ·ã¿ãèžè¥²ããJamba 1.5ã¯ãé·æçè§£ã§ä»ã¢ãã«ãå¯ãä»ããªãå§åçãªç²ŸåºŠãå®çŸããããã®èœåãè©äŸ¡ããããã«ãAI21ã¯Jamba 1.5ãè€æ°ã®é·æçè§£ãã³ãããŒã¯ã§æ€èšŒããŠããã
ç¹ã«æ³šç®ãã¹ãã¯ãRULERãã³ãããŒã¯ã«ãããçµæã ãRULERã¯ãé·æçè§£èœåãè©äŸ¡ããããã«èšèšããã13ã®åæã¿ã¹ã¯ã§æ§æãããŠãããããã«ã¯ããé·ãæç« ã®äžããç¹å®ã®æ å ±ãèŠã€ãåºããã¿ã¹ã¯ãããé·ãæèã®äžã§å€æ°ã®å€ã远跡ãããã¿ã¹ã¯ããé·æã®äžããæãé »åºããåèªãéèšãããã¿ã¹ã¯ãªã©ãå«ãŸããã
ãã®RULERãã³ãããŒã¯ã«ãããŠãJamba 1.5 Largeã¯25äž6,000ããŒã¯ã³ã«äžãé·æãé«ã粟床ã§åŠçã§ããããšã確èªãããã25äž6,000ããŒã¯ã³ã¯ãæ¥æ¬èªã«æç®ãããšçŽ25äžæåã«çžåœãã500ããŒãžä»¥äžã®é·ç·šå°èª¬ããŸãã¯100æ¬ä»¥äžã®ãŠã§ãèšäºã«å¹æµããæ å ±éãšãªãã

https://arxiv.org/pdf/2408.12570
å ·äœçãªæ°å€ãèŠããšãJamba 1.5 Largeã¯4,000ããŒã¯ã³ã®æç« ã§96.7%ã8,000ããŒã¯ã³ã§96.6%ã1äž6,000ããŒã¯ã³ã§96.4%ã3äž2,000ããŒã¯ã³ã§96.0%ã6äž4,000ããŒã¯ã³ã§95.4%ã12äž8,000ããŒã¯ã³ã§95.1%ããããŠ25äž6,000ããŒã¯ã³ã§ã93.9%ãšããé«ã粟床ãç¶æããããšã«æåããããã®æ°å€ãå¹³åãããš95.7%ãšãªããä»ã®ã©ã®ã¢ãã«ãããé«ãã¹ã³ã¢ãšãªã£ãã
ãã®æ°å€ãã©ãã»ã©é©ç°çãªã®ããä»ã¢ãã«ãšã®æ¯èŒã§æç¢ºã«ãªãã
ããšãã°ãæãå¥éããã°ãŒã°ã«ã®Gemini 1.5 Proã¯ã12äž8,000ããŒã¯ã³ãŸã§ã¯94.4%ã®ç²ŸåºŠãä¿ã£ãŠãããã25äž6,000ããŒã¯ã³ã§ã¯65.1%ãŸã§äœäžããŠããŸã£ãã®ã ãããã¯ãæ¥æ¬èªã§25äžèªãåŠçãããããåºå粟床ã3åã®2ã»ã©ãŸã§èœã¡ãŠããŸãããšã瀺åããŠããã
OpenAIã®GPT-4â1106-previewããæå€§ã³ã³ããã¹ããŠã£ã³ããŠã¯12äž8,000ããŒã¯ã³ãšãªã£ãŠããããå®éã«ãã®éã®æ å ±ãåŠçããããšã粟床ã¯81ïŒ ãŸã§äžãã£ãŠããŸãããšã確èªããããé«ã粟床ã§åçãçæã§ããã®ã¯ã6äž4,000ããŒã¯ã³ãŸã§ãšãªãã
ä»ã«ãæå€§ã³ã³ããã¹ããŠã£ã³ããŠ12äž8,000ããŒã¯ã³ã売ãã«ããAIã¢ãã«ã¯å€æ°ååšãããããã®æå€§å€ã§æ å ±åŠçããããšã粟床ã¯50ã60ïŒ ã»ã©ãŸã§äžãã£ãŠããŸããMistral Large2ã«è³ã£ãŠã¯ã12äž8,000ããŒã¯ã³ãåŠçããããšã粟床ã¯23ïŒ ãŸã§äžãã£ãã
Jamba 1.5ã®é·æçè§£èœåã¯ãâBENCHïŒInfinite-BENCHïŒãšãããã³ãããŒã¯ã§ãå®èšŒããããããã¯ãå¹³å10äžããŒã¯ã³ã®é·ãå°èª¬ã®çè§£åãæž¬å®ãããã³ãããŒã¯ãã¹ããè±èªã®è³ªåå¿çïŒEN.QAïŒã¿ã¹ã¯ã§ã¯ãJamba 1.5 Largeã¯34.9%ã®ã¹ã³ã¢ãç²åŸããLLaMA 3.1 70Bã®36.7%ã«è¿«ãçµæãšãªã£ãããŸããè±èªã®å€è¢éžæåé¡ïŒEN.MCïŒã¿ã¹ã¯ã§ã¯ãJamba 1.5 Largeã¯80.4%ãèšé²ããLLaMA 3.1 70Bã®78.2%ãäžåã£ããMistral Large 2 123Bã¯36.9%ã«ãšã©ãŸã£ãŠããã

https://arxiv.org/pdf/2408.12570
ãããã®çµæã¯ãJamba 1.5ãé·æçè§£ã«ãããŠåè¶ããèœåãæã€ããšã瀺ããŠãããç¹ã«ã25äž6,000ããŒã¯ã³ãšããéåžžã«é·ãã³ã³ããã¹ãã«ãããŠãé«ã粟床ãç¶æã§ããç¹ã¯ãä»ã®ã¢ãã«ã«ã¯ãªã匷ã¿ã ããã®èœåã¯ãé·ãææžã®èŠçŽãè€éãªæèãå¿ èŠãšãã質åå¿çã倧éã®ããã¹ãããŒã¿ã®åæãªã©ãæ§ã ãªå®çšçãªã¢ããªã±ãŒã·ã§ã³ã§åšåãçºæ®ãããšæåŸ ãããã
ãããŸã§RAGã·ã¹ãã ã«äŸæ ããŠããã¿ã¹ã¯ã«ãããŠããåã«ããã¥ã¡ã³ããã¢ããããŒãããã ãã§å¯Ÿå¿ã§ããããã«ãªãå¯èœæ§ã瀺ãJamba 1.5ãä»åŸãMambaããã€ããªããã¢ãããŒããæ¡çšããã¢ãã«ã¯ããã«å¢ããããšãèŠèŸŒãŸããã
æïŒçŽ°è°·å ïŒLivitïŒ